
Trike v.1 Methodology Document [Draft]

Paul Saitta∗, Brenda Larcom†, and Michael Eddington‡

July 13th, 2005

Abstract

Trike is a unified conceptual framework for security auditing

from a risk management perspective through the generation

of threat models in a reliable, repeatable manner. A secu-

rity auditing team can use it to completely and accurately

describe the security characteristics of a system from its high-

level architecture to its low-level implementation details. Trike

also enables communication among security team members and

between security teams and other stakeholders by providing a

consistent conceptual framework. This document describes the

current version of the methodology (currently under heavy de-

velopment) in sufficient detail to allow its use. In addition to

detail on the threat model itself (including automatic threat

generation and attack graphs), we cover the two models used

in its generation, namely the requirements model and the im-

plementation model, along with notes on risk analysis and

work flows. The final version of this paper will include a fully

worked example for the entire process. Trike is distinguished

from other threat modeling methodologies by the high levels

of automation possible within the system, the defensive per-

spective of the system, and the degree of formalism present in

the methodology. Portions of this methodology are currently

experimental; as they have not been fully tested against real

systems, care should be exercised when using them.

The methodology described in this document is copy-

right 2003-2005 Paul Saitta, Brenda Larcom, and Michael

Eddington, excluding those covered under other copy-

rights, and the whole may be used under the MIT li-

cense (http://www.opensource.org/licenses/mit-license.

php), “software” being replaced with “methodology” through-

out. This document is published under the Creative Commons

attribution-noncommercial-sharealike 2.0 license (http://

creativecommons.org/licenses/by-nc-sa/2.0/legalcode).

Contents

1 Requirements Model 3

1.1 Actors 3

1.2 Assets 3

1.3 Intended Actions 4

∗pbs@dymaxion.org
†asparagi@hhhh.org
‡michael.eddington@ioactive.com

1.4 Rules 5

1.5 Actor-Asset-Action Matrix 5

2 Implementation Model 5

2.1 Intended Actions vs. Supporting Op-

erations and the State Machine 5

2.2 Data Flow Diagrams 6

2.3 Use Flows 7

3 Threat Model 8

3.1 Threat Generation 8

3.2 Attacks, Attack Trees, and the Attack

Graph 9

3.3 Weaknesses 10

3.4 Vulnerabilities 10

3.5 Mitigations 11

3.6 Attack Libraries 11

4 Risk Model 11

4.1 Asset Values, Role Risks, Asset-Action

Risks, and Threat Exposures 12

4.2 Weakness Probabilities and Mitigations 12

4.3 Vulnerability Probabilities and Expo-

sures 13

4.4 Threat Risks 13

4.5 Using the Risk Model 13

5 Work Flow Notes 14

5.1 Full Software Life Cycle Work Flow . 14

5.2 Pre-Release or Production Code Audit

Work Flow 15

A Glossary 16

B References 17

1

Section 0 Trike v1 Methodology Document [Draft] Page 2

Introduction

Trike is a unified conceptual framework for security

auditing from a risk management perspective through

the generation of threat models, with an associated

tool which is currently under heavy development.

This document describes a stable version of Trike to

allow the community to start using the methodol-

ogy while it’s still under development. Many things

here will change, if they haven’t already, but we feel

it’s more important to release now and get a usable

methodology out there.

We approach threat modeling and indeed all system

auditing activities from a risk management perspec-

tive. It is impossible to completely secure any sys-

tem against all attackers, and thus we are charged

with ensuring that the countermeasures against at-

tacks are appropriate given the risks of those attacks

which they defend against, and the efficacy of those

countermeasures. In generating a threat model, we

attempt to do the following four things:

1. With assistance from the system stakeholders,

ensure that the risk this system entails to each

asset is acceptable to all stakeholders.

2. Be able to tell whether we have done this.

3. Communicate what we’ve done and its effects to

the stakeholders.

4. Empower stakeholders to understand and reduce

the risks to themselves and other stakeholders

implied by their actions within their domains.

A threat model is a systemic and systematic evalu-

ation of the security risks of a system. It must ex-

amine all potential risks throughout the system and

not concentrate only on where holes are expected to

be found, and it must evaluate the security of the

system as a whole, as opposed to only looking at the

integrity of individual pieces. This analysis must be

performed in as systematic a manner as possible, to

ensure correctness and completeness. Threat models

are useful in finding holes at both the business logic

and architectural levels, and can be used to organize

and drive the entire security process, ensuring the

completeness of analysis at the implementation level.

Design flaws, conflicting requirements, unexpectedly

exposed interfaces, lapses in policy enforcement, and

misplaced trust can all be very hard to find without a

threat model — when these issues are found without

one, it’s mostly a matter of luck.

All security analysis work, including threat modeling,

requires trained security experts. However, much of

the work in threat modeling can and should be auto-

mated, allowing the experts to focus their time and

attention where it is required. The formalisms in the

Trike methodology are designed to support automa-

tion to the greatest degree possible. These same for-

malisms also allow us to give strong guarantees which

other, more ad-hoc methodologies cannot; specifi-

cally, that when we enumerate all threats against

an application, we have in fact enumerated all pos-

sible threats. If the attack library used is complete,

and the implementation model correct, all currently

known attack methods have been matched against

those places where they could succeed. Furthermore,

if the formal model of the application is constructed

correctly, multiple independent auditors will arrive at

the same conclusions. This allows applications to be

re-audited by different teams at different times while

arriving at compatible results, and for the compari-

son of different applications.

Beyond its more systematic methodology, Trike dif-

fers in focus from other existing approaches to threat

modeling in that it focuses on modeling threats from

a defensive perspective, not that of an attacker. We

begin by understanding the application itself, in the

context in which it is used. Without a thorough, for-

mal understanding of the application, it is impossible

to examine the threats to the application. We also

separate technology-specific issues from application-

specific issues, making IP reuse easier between appli-

cations. Further, we separate implementation issues

from requirements and business needs issues, allow-

ing conflicting requirements to be easily identified.

The automation inherent in Trike allows for quicker

results from less initial information, and much more

complete results with the same amount of effort, as

compared to other methodologies. Trike’s multiple

models work together to allow the amount of infor-

mation gathered about different areas of a system to

be tailored to business needs and different areas of a

system to be examined in differing levels of detail.

Threat models in general and Trike in particular are

also very good as communication devices. We lay

out all the threats to the system and their associ-

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 1 Trike v1 Methodology Document [Draft] Page 3

ated risks in a clear, easy to understand fashion, and

provide stakeholders without security background a

clear understanding of the security situation as it

stands. While technical personnel will find detailed

attack graphs useful in plotting remediations, even

non-technical personnel can instantly appreciate and

work with higher level threat data. Trike threat mod-

els also communicate where risks lie in a system,

and can also be used to compare risks between sys-

tems. In addition to allowing actuarial decisions to

be made about a system, this can guide purchasing

decisions if outside systems are being evaluated, focus

risk management or software improvement processes,

and evaluate alternate design possibilities. Risk cal-

culation can even feed back directly into the process

for large systems, as an initial baseline set of threats

can be generated and, based on risk data, different

areas can be selected for full attack graph generation.

Not all sections of the Trike methodology are pre-

sented at the same level of confidence. As the

methodology is currently under heavy development,

some sections have not been fully tested against real

systems and care should be exercised in their use.

Many sections of the methodology are likely to change

without notice, and new versions of the methodology

will likely be incompatible with older ones. Specif-

ically, supporting operations (especially), the state

machine, and use flows are all experimental, as, ob-

viously, are attacks generated from them. Attack

graphs, while currently somewhat ad-hoc and cur-

rently under development, have been tested (as have

the requirements model and threat generation). The

risk model has been tested to a certain degree, but

should only be used as a guide at this point in time;

refinement of the model is planned. The current draft

of the paper does not include examples. A final ver-

sion will be forthcoming soon with a fully worked

sample threat model.

1 Requirements Model

All threat models must begin with an understanding

of what the system is intended to do. Trike looks

at who interacts with the system, what things the

system acts upon, and the actions taken by actors

that the system is intended to support. We go further

to look at what rules exist in the system to constrain

those actions, and tie all of this information up in

a convenient tabular format. Once the requirements

model is complete, we can skip ahead to the threat

generation (see section 3.1 on page 8), or continue on

to the implementation model (see section 2 on page 5)

and do both threat generation and the attack graph

at once.

1.1 Actors

An actor is a human being who interacts with the

system in some way. Actors must interact with some

part of the system which is in scope for the threat

model. For instance, the backup administrator is not

an actor, unless you are analyzing the backup system.

Likewise, the software developer is not an actor unless

you are analyzing a source control system. In some

rare cases, a piece of software might be an actor in the

system, if, for instance, it is capable of autonomously

taking actions against assets without prior instruc-

tion from a human. This case is very rare however,

and you should think carefully if you think that you

have a non-human actor — we have yet to encounter

one. Simple scheduled jobs and the like definitely do

not qualify for actor status. The actual entity being

described by an actor is the role that the actor takes.

Each set of permissions in the system should be a

distinct named role. A human may have more than

one role in the system and may change from one role

to another while using the system (see section 2.1 on

page 5 for more details).

1.2 Assets

Assets are normally discrete data entities, but some-

times physical objects, which feature in the business

rules of the system. Assets are things which are in-

herently meaningful in the problem domain of the

system, not merely in the way the system is imple-

mented. For example, a widget that a company is

shipping across the country (or the data that repre-

sents it in the system) is probably an asset, while the

password of a blog user is not an asset. While the

password may be very important in the way the sys-

tem is implemented, if there was a way to strongly

identify a user without a password or equivalent to-

ken, a password would not need to be part of the

system at all. We care about the data that needs to

be secured, not artifacts of how it is secured.

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 1 Trike v1 Methodology Document [Draft] Page 4

Assets are fairly specific, tangible pieces of data. For

instance, the reputation of the developer who wrote

a piece of software is not an asset to the system, nor

is the uptime of the system. The system itself is an

asset only if the system is self-referential. The system

software might be an asset if the system installer is

in scope for the audit, but otherwise would not be.

Likewise, system configuration files are almost always

not assets, nor are the machines the system runs on.

There might be an exception to the first if the soft-

ware provides an interface to edit its configuration,

but even then, the data in the file would be the asset,

not the file itself.

Assets can normally be associated with a dollar value

to the client. While the generation of such values is

an imprecise science at best, a company can normally

come up with values for how much an average trans-

action costs them or what the productivity cost would

be if a crucial service was unavailable. See section 4.1

on page 12 for more discussion on assigning values to

assets and the trade-offs involved in this decision.

Identifying assets can be one of the more difficult

parts of the requirements model, and if you are going

to miss something, it is probably an asset. One place

to start is by looking at what information each actor

uses in their interactions with the system. Also, look

at what nouns you use repeatedly when talking about

the purpose of the system. What transient or per-

sistent data is inherently meaningful to the system?

Unique assets are almost always treated differently in

the rules — if two or more assets are treated identi-

cally in the rules, you have an opportunity to simplify

your model by combining them, and you will proba-

bly discover later that this is the correct choice. The

greater the number of assets you model in a system,

the more detail you can include in the rules. How-

ever, the number of threats increases geometrically

with the number of assets.

1.3 Intended Actions

Actions are things which actors do to assets. Our

primary focus with Trike is on threat modeling for

software, and thus while the decomposition of actions

for data assets is fairly fixed, the same decomposition

for physical objects is very much a work in progress.

That said, any (virtual) action can be decomposed

into one of “create”, “read”, “update”, and “delete”

(CRUD), or a compound action based on one or more

of these actions. Create, read, and delete actions are

generally fairly obvious. An update action might al-

ter an entire instance of an asset, or only some small

part of one (see section 1.4 on the following page be-

low for more information). Copy can be thought of

as a combination of read and create, transformations

of data can be considered to be instances of update

or read and update on a single asset, move is a com-

bination of read, update, and delete between a pair

of assets, and a closed control loop can be seen as an

instance of read and update, again between a pair of

assets. This ability to break down arbitrary actions

into combinations of these four atomic actions is at

the core of the Trike methodology, as it is inherently

related to how we generate threats later on.

Some circumstances do call for another more exotic

action, but this is only very, very rarely needed, to

the point that we hesitate to even include it. If you

deal with a system which is specifically intended to

move around code and execute that same code as part

of the core function of the system (and not merely as

an implementation-defined means to an end), then

you may have an additional “invoke” action in your

system. In our experience, this is rarely actually the

case. No other actions are ever needed for virtual

assets.

We make a distinction between actions generally and

those actions which the system is intended to sup-

port. Each intended action is a triple of action, as-

set, and rules, with the rules for an action including

those roles or actors which may perform it. Together,

the intended actions form a complete formal descrip-

tion of what the system being analyzed is trying to

achieve.

When constructing the list of intended actions, we

look at only those actions which are supposed to

happen during the normal use of the system as de-

signed, regardless of whether or not the system as

implemented allows them. Unintentional behaviour,

be it an easter egg or a vulnerability, is not included.

Every intended behaviour of the system must be ex-

pressed in the intended actions. This means that ev-

ery actor and asset must appear at least once. Some

actions may not have an actor, and some may not

specify any specific requirements for the actor, as al-

though actors are called out separately they are sim-

ply another kind of rule applied to an action. In-

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 2 Trike v1 Methodology Document [Draft] Page 5

tended actions without actors denote automatic jobs

or other non-human agents acting on the system.

To identify intended actions, examine each asset and

actor pair in turn, and consider each of the four ac-

tion types. Is this action supposed to occur within

the problem space the system is intended to solve?

Under what circumstances should it happen? Given

these answers, the set of actions should be obvious,

as should the beginning of the rules for the action.

It is important to note that there are a number of

things which may be critical in the operation of a

system, especially from a security perspective which

are not, in fact, intended actions, as they exist only

in the implementation of the system, not in its re-

quirements directly. These actions will almost always

change the state of the actor taking them or of the

system without directly modifying any assets in the

system. Events such as logging into the system fall

in this category, and are covered in section 2.1.

1.4 Rules

The complement of the intended actions are the rules

that apply to each action. Rules define in which cir-

cumstances an action can occur. The rules for an

action are a set of declarative sentence fragments,

connected by logical connectives (and, or, and not).

Rules should be consistent in wording and terminol-

ogy, for ease of analysis. Rules can be stated in a

positive or negative form, the negative being the con-

trapositive form of the entire tree. One of the most

basic rules that almost all actions will have is “actor

is in <role>”, where the role is one of the named cat-

egories of actors. Other categories for rules include

the frequency that actions can be taken or when they

may or must occur, what portions of an asset can be

affected by an action, specific properties of the ac-

tor or asset, what data must be recoverable about an

action after the fact (simply stating that an action

must be logged is not sufficient to capture the intent

of logging), other actions that must be taken before

or after the action in question, and relationships be-

tween instances of different assets or actors to assets.

1.5 Actor-Asset-Action Matrix

The actor-asset-action matrix is a convenient form to

represent all or almost all of the data about the re-

quirements model in a grid format. The columns of

the matrix represent the assets in the system, and

the rows represent the roles that actors can take on.

Each cell of the matrix is again subdivided into four,

for each of the actions of CRUD. When using the

tool, each action-cell of the matrix can be set to three

different values, to indicate an allowed action, a dis-

allowed action, or an action with rules, and a list of

slots to add rule trees is generated. Without the tool,

a mark should be placed in each cell of the matrix and

the rules trees written up separately.

2 Implementation Model

Once the requirements have been formally defined,

information must be gathered about the implemen-

tation. With an understanding of what the system is

intended to do, this can be ordered much more eas-

ily. We start by looking at those actions in the system

which do not fit into the intended actions framework

and how actions interact with the state of the system.

We then look at how the different software and hard-

ware components of the system as implemented fit to-

gether in the data flow diagram. Then we map from

the actions and state of the system into the data flow

diagram. From here, we can proceed to the threat

model (see section 3 on page 8) and attack genera-

tion.

2.1 Intended Actions vs. Supporting

Operations and the State Machine

Every actual system has steps which the user takes

in the system which are not included in the set of in-

tended actions. These operations are how the user in-

teracts with those business rules of the system which

affect how and when they may take actions and what

requirements they must satisfy to do so. In other

words, these supporting operations affect the state of

the application itself, as opposed to the assets. Login

is a prime example of such a supporting operation —

it places the user in a new role, which is a prerequisite

for other, intended actions within the system. Deter-

mining the set of supporting operations is similar to

determining the set of intended actions.

In order to find a set of possible operations, we must

first find the set of possible objects of those actions.

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 2 Trike v1 Methodology Document [Draft] Page 6

In one sense, supporting actions only have a single

object, the state of the system. However, for our

purposes we need to approach the subject at a finer

granularity. Construct a table, and for each state-like

requirement in the rules for intended actions, select a

state tag which consists of an identifier and the type

of object in the system which it applies to. The “type

of object” should be an asset in the system, an actor,

a specific role, or something else similar. Thus, one

could have a “posts available” state identifier which

could apply to assets of type “blog”, or a “logged in as

user” tag which could apply to actors, denoting the

actor being in the role “user”. Separately, one could

have an identifier “account disabled” which would ap-

ply to a role “user” (not, obviously, to the actor tak-

ing on that role). Some subset of the state tags will

be starting states for the system, and this should be

noted in the state table.

Once the set of state tags is determined, we look at

the set of specified supporting operations in the sys-

tem and formalise them as a set of state addition

and subtraction operations, and potentially a set of

rules for each operation. Note that in some cases,

especially with complex systems, this process may be

recursive to a certain degree, as new state tags will

need to be generated based on the rules for support-

ing operations. Some supporting operations may not

be performed directly by an actor. Some of the in-

tended actions may also have side effects which affect

the state of the system, especially if the actions have

rules limiting the frequency at which they may be

taken.

Once the set of state tags and supporting operations

is complete and their relationship to the intended ac-

tions noted, we have a state machine for all acts possi-

ble within the system. Portions of this state machine

may be drawn out, but for non-trivial systems this

diagram will often prove prohibitively large or not

easily diagrammable at all. It is important to check

that all states in the system are actually reachable

from the starting states.

Supporting operations specifically and the state ma-

chine in general are currently highly experimental

features of the Trike methodology and are likely to

change. Care should be taken when using these fea-

tures in a production audit; while we believe that are

likely to be no errors introduced in the model from

them, they may prove to be cumbersome or problem-

atic, especially in large systems. There is currently

no tool support for any of these features. It will be

implemented in an upcoming release, but the features

themselves may have changed.

2.2 Data Flow Diagrams

The next portion of our model of the system’s imple-

mentation comes from a data flow diagram. While

there are multiple diagramming techniques which

could potentially represent this information, this

method seems to be the best fit for our needs. A

DFD gives a logical depiction of the implementation

of the system and shows the large-scale architecture

of the system. It shows what entities exist in the

implementation of the system, and along what paths

these entities exchange information.

The entities in a DFD consist of processes, data

stores, external interactors, and data flows. A process

is a part of the system which does something, such

as manipulating data, taking actions in the problem

domain (intended actions), changing or verifying sys-

tem state, etc. Processes represent the software (or

collections of software, etc.) which carry out these ac-

tions, and are recursively composed in the diagram.

Each DFD, except for the top level context DFD, is

the expansion of a process in the next higher level

DFD. A data store is a resource whose primary func-

tion is to store data for later retrieval. Note that

many databases qualify as both a process and a data

store. An external interactor is a process which is

out of scope. For many purposes, actors are also con-

sidered external interactors. A data flow is a path

from one DFD entity to another, along which specific

data moves. Processes may talk to each other or to

data stores or external interactors, but data stores

cannot talk to each other directly (there is no agency

to perform the connection without a process). Each

data flow in or out of a process to be expanded must

appear in the new lower level DFD. Any given DFD

should only show those data flows which connect to

processes in this DFD — flows between external inter-

actors are normally not included, although if human

processes are part of the DFD, then the relevant flows

between actors should be included.

The top level or context includes every actor and ev-

ery out of scope system or process utilized by the

system. As lower level DFDs are expanded, trust

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 2 Trike v1 Methodology Document [Draft] Page 7

boundaries in the system should be noted, be they

boundaries between networks enforced by firewalls,

boundaries between machines, process boundaries, or

more literal trust regions enforced by authentication

technologies, either those part of the system or un-

derlying it. For our purposes, DFDs must be decom-

posed until there are no longer any processes which

cross trust boundaries.

Once the basic DFD has been constructed, markup

must be added to it to capture more information

about the implementation. At the most basic level,

we need to capture the technologies used in each el-

ement. For processes, this means the host OS, li-

braries, platforms, or underlying applications, and all

relevant version information. For data stores, we need

to know the type of data store, be it a file store, a

database, or a registry entry, and again, relevant ver-

sion and host information. For data flows, we need

to know about network protocols at least, and ide-

ally which applications on each end are the actual

data flow endpoints, if this information is not cap-

tured directly in lower level DFDs. Data flows which

cross trust interfaces are especially interesting, and

the end points for such flows should always be well

documented. Unsurprisingly, we also want informa-

tion about trust boundaries and what enforces them,

including as much detail as possible. Where secu-

rity technologies are in use throughout the system,

they should be specifically called out, including en-

cryption, authentication, and authorization systems,

firewalls, certificates, passwords, etc.

For large systems, the correspondence between the

physical or network layout of the system and the ap-

plication level DFD can be complex. In these cases,

a network diagram of the system is an essential sup-

plement to the DFD. The DFD should include at

least one process which runs on each machine in the

network diagram, unless they are specifically not in-

cluded in the system (and in this case, their inclu-

sion in the network should be considered carefully,

as they represent a latent risk to the security of the

system). Lower level diagrams provide a number of

useful functions. They allow you to sanity check the

DFD, ensuring that all the systems and (especially)

all the trust boundaries really are the way you think

they are. They let you unload complex details from

busy DFDs. Network diagrams especially are good

for this — you can list all of your network level trust

boundary technologies on the network diagram only,

and do the same for network technology details, and

only the actual trust boundaries along with the appli-

cation level details on the DFDs themselves. Network

diagrams or other lower level diagrams are also great

for pinpointing areas where trust boundary hopping

can occur, such as situations where two data flows

which are called out as being on completely sepa-

rate networks are actually only on separate VLANs

on the same switch. More than two sets of diagrams

may be needed for complex situations, e.g. an appli-

cation level DFD, a TCP level DFD, and a hardware

level DFD, especially in situations like the previous

involving VLANs.

Trike does not yet have tool support for DFDs, and

they can instead be created in most structured draw-

ing tools. DFDs will be implemented in an upcoming

release.

2.3 Use Flows

Once we have a full set of all actions intended and

supporting, the corresponding state machine, and a

clear understanding of the architecture of the system,

we map from state machine to the DFD and come up

with all the use flows for the system. Use flows are

used to map actions in the implementation and show

all the ways that assets and application state can be

affected from inside the system. They provide the

basis for understanding complex attacks within the

system.

To construct use flows, we take each intended or sup-

porting action in the system and trace the paths

through the DFD that will implement that action

(there may be more than one way to do it). We break

the use flow into segments each time it passes through

an external interactor, including users. Each use flow

will normally have a set of preconditions and post-

conditions in the state machine. Actions which are

broken into multiple segments by returning control

to a user may need to have additional state transfor-

mations added to reflect enforced work flows within

the system. For example, if posting a blog entry is a

two stage process consisting of submitting the initial

post and then reviewing and approving it as displayed

back by the system, a state addition should added to

the first use flow segment with a state tag of “post

submitted”, and the second use flow segment should

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 3 Trike v1 Methodology Document [Draft] Page 8

require this state for it to be entered (with the tag

being deleted at the end of the second use flow seg-

ment).

If alternate legitimate paths through a use flow exist,

the flow should be forked at the point at which con-

trol flow changes (regardless if it is passing through

the same nodes or not). This can be used to handle

failure responses, etc. If the user’s actions can affect

which nodes the path goes through, this should also

be shown as a branch in the use flow (for instance, if

the user can select which database to store informa-

tion in).

Once the basic set of use flows is complete, markup

must be added here as well. The markup added to

the DFD should not be duplicated here. Rather, we

want to mark where elements of the state machine

are implemented in the DFD. We mark the moment

(or location, if you will) where each intended action

is complete, the location where each precondition or

other rule is enforced, and the moment when the state

changes occur. Important side effects such as logging

should be noted, as should the content of the mes-

sages traversing each data flow in the use flow.

Once the use flows are constructed, some basic sanity

checks should be made. Are there any elements in

the DFD which are in scope but are not touched by

any use flow? These imply that either these DFD

elements are unnecessary and their presence in the

system should be investigated, or that some number

of actors, assets, or intended and supporting actions

is missing. Also, any time there is more than one use

flow for an action or more than one way to enter a

state, all relevant flows should be checked to ensure

that they enforce the same set of constraints.

Use flows are currently a highly experimental feature

of the Trike methodology and may change. Care

should be taken when using them in a production

audit; while we believe that there are likely to be no

errors introduced in the model from them, they may

prove to be cumbersome or problematic, especially

in large systems. There is currently no tool support

for use flows; the same ad hoc tools used for DFDs

can be used, although they will be somewhat cum-

bersome. Use flow support will be integrated into a

future release of Trike.

3 Threat Model

Once we have a full model for both the requirements

of the application and the implementation of the ap-

plication, we have all information needed to start

on the threat model proper. The first part of the

threat model can be started with only the require-

ments model and the implementation model will not

change these results. Once we have the set of threats

for the application and the implementation model,

we proceed to building the attack graph and exam-

ining the actual (as opposed to specified) system to

verify all weaknesses in the system. This done, we

can determine the vulnerabilities to the system and

apply mitigations. Of course, not all of these steps

must be done for all areas of the system. If risk cal-

culations are performed once threats have been gen-

erated, specific components can be singled out for at-

tack graph generation, etc. This does, of course, risk

missing some attacks which cross system boundaries,

and whenever possible a full threat model should be

performed.

3.1 Threat Generation

Threats describe what, specifically, could go wrong

with a system in the application domain. They are

the negative eventualities that we are attempting to

prevent. In terms of the requirements model, threats

are anything which is more or less than the intended

actions, as these represent everything that can be

done in a secure system. Threats are never technol-

ogy specific or implementation specific (those are at-

tacks) — instead, they are couched directly in terms

of the business rules of the system. Threats are also

always events, not actors who might be a risk (or-

ganized crime would be an attacker which might at-

tempt to realize a threat, not the threat itself). The

set of threats against a system is purely determinis-

tic, given the actor-asset-action matrix (and associ-

ated rules). Each threat will later serve as the root

of an attack tree within the larger attack graph.

We have a fairly simple taxonomy of threats. All

threats fall into one of two categories, either denial of

service or elevation of privilege. A denial of service

threat occurs when an actor is prevented from taking

a legitimate, intended action in the system when act-

ing in accordance with the rules for that action. An

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 3 Trike v1 Methodology Document [Draft] Page 9

elevation of privilege threat occurs in one of three sit-

uations: When an actor performs an action which no

actor is intended to perform on an asset (an entirely

disallowed action), when an actor performs an action

on an asset despite the rules for that action (specif-

ically disallowed action), or when an actor uses the

system to perform an action on some other system’s

asset. This last instance is the “social responsibility”

threat, and represents such things as open mail relays

which can be abused by spammers, etc. While this

may not directly affect the security of the single sys-

tem in question, it may lead to reliability problems (if

nothing else), which will certainly cause real issues.

Spoofing, sometimes considered a threat in other

methodologies, is actually an attack in most cases.

In some specific cases (such as a cryptographic sys-

tem specifically intended to prevent it), it can be a

threat, but is just an instance of an elevation of priv-

ilege threat where an actor is able to violate a rule

specified for the action in question stating that spoof-

ing must not be possible. Tampering with data and

information disclosure are likewise just instances of

elevation of privilege.

Generating threats is quite simple, given the data we

have. One denial of service threat is generated for

each intended action. Then we invert the set of in-

tended actions and take the set of disallowed actions,

generating an elevation of privilege threat for each

one, the set of entirely disallowed actions. Next, we

take each intended action with further rules and gen-

erate an elevation of privilege threat for it, the specif-

ically disallowed actions (actions performed outside

their rules). Finally, we add what we call the social

responsibility threat, namely the threat of an actor

using this system to take an action against another

system. All possible threats are thus encompassed

within this schema.

Even without progressing further into the threat

model, a set of threats can be quite useful. We’ll see

in section 4.5 on page 13 that a risk analysis based

on only the threats has value; however, even with-

out that, we can do basic requirements analysis and

simply look at the number of threats against a sys-

tem as a guideline for dealing with the complexity of

the security implications of a proposed system. Also,

the set of threats can be very useful when moving

from the requirements phase to the design phase, as

it provides a canonical list of potential security issues

to design around.

3.2 Attacks, Attack Trees, and the At-

tack Graph

Given an implementation model and a set of threats,

we can begin to look at ways in which those threats

may be realized. An attack is a threat-specific,

implementation-specific, or technology-specific step

an attacker could take to realize or help to realize a

threat. Attacks are organized into attack trees, which

are hierarchical descriptions of how an attacker could

realize a specific threat to the system, using this im-

plementation. The attack tree is made up of tasks

and subtasks. The root node of each tree is a threat,

and the children of each node describe in increasing

detail how an attacker could accomplish the task in

the parent node. Other than the threat root node, all

the nodes in an attack tree are attacks. Each node’s

children are subgoals for the node, and together, the

node’s children should specify every way that this

node could occur. In addition to goal type nodes,

attack graphs can contain logical connectives. Some

nodes may require all of their children to be accom-

plished in order to be accomplished themselves, while

others may require only a single node to be accom-

plished.

Normally, a complete attack tree will not need to be

generated for every threat. Rather, you only need

to expand an attack tree until there is enough infor-

mation to reasonably decide whether the risk caused

by the threat has been reduced to an acceptable risk

level. If it has not, then you need to continue to

generate a complete attack tree for the threat, so the

actual weaknesses can be understood and mitigations

can be implemented. A leaf node of a complete attack

tree will locate a specific type of attack in the data

flow diagram and source code. You cannot expand

such a leaf node any further, hence the name “com-

plete attack tree”. Leaf nodes can have weaknesses,

vulnerabilities, and mitigations attached to them, as

described below.

It may seem somewhat odd to concern ourselves so

heavily with the means of attack against an applica-

tion when we are interested in threat modeling from

a defensive perspective. The critical issue for a defen-

sive perspective, however, is to ensure that we find all

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 3 Trike v1 Methodology Document [Draft] Page 10

weaknesses, not just a sufficient number to compro-

mise the system. Only by enumerating all possible

ways to attack the system, once we have determined

what we are trying to defend, can we ensure that we

are adequately defended against all attacks.

A single attack may be used in realizing multiple

threats. Thus, while each individual threat has an

attack tree specific to that threat, there is a larger di-

rected attack graph encompassing all attacks against

the system. All attacks help to realize at least one

threat.

The generation of the attack graph is not currently a

fully automateable process. As we are not attempting

to prove the correctness of the software formally, the

experience and knowledge of the auditor working on

the threat model must be relied on at certain points,

and attack generation is one of those points. High

level attack generation follows a straightforward at-

tack tree skeleton, and thus generation proceeds pro-

grammatically to a certain point. Beyond that point,

the auditor relies on their skill and the library of at-

tacks to finish the tree to the desired depth. Develop-

ing a lower level attack taxonomy on an ad-hoc basis

may prove to be a very useful endeavor for an organi-

zation using threat modeling heavily. We are hoping

to develop a more canonical and carefully considered

attack taxonomy in the future.

The quality of attack generation is limited by the ac-

curacy of the system description and the quality of

the attack library used in generation. If the set of

intended actions and (especially) the rules for those

actions is not complete and correct, the correct set

of attacks cannot be generated. The same applies for

the supporting operations, the state machine, data

flow diagram, and use flows, although there is more

flexibility in this second set. The more data is cap-

tured there, however, the more accurate the attack

trees will be.

Attacks, attack trees, the attack graph, weaknesses,

vulnerabilities, and mitigations are fairly solid fea-

tures of Trike currently. We are expecting that they

will become more refined and the way they interact

with other parts of the model may even change con-

siderably, but they are well tested as they stand. Cur-

rently we do not have a released tool that supports

working with attacks, but we are currently working

on developing one.

3.3 Weaknesses

A weakness is a problem in the system which allows

a leaf node in an attack tree to work, regardless of

whether the attacker can actually realize a threat us-

ing it. Any flaw or error with security implications in

the source code or application or host configuration

of a system can be a weakness. Something can even

be a weakness without allowing for an attack to suc-

ceed — if an organization has decided that certain

constructions have too much risk, they can be con-

sidered weaknesses, even if nothing exploitable exists.

In general, though, a weakness is the reason that a

specific attack succeeds. A weakness is the opposite

of a mitigation.

Weaknesses are the most direct point of contact be-

tween a code audit and a threat model. Although

the threat model should be guiding the focus of the

code audit and indeed the entire security process,

bugs found in a code audit are equivalent to weak-

nesses in the threat model. Starting with either a

complete or mostly complete attack tree, an auditor

can perform a targeted sweep of the code, picking

out weaknesses. Likewise, if any security issues are

found in the code which do not correspond to attacks

in the attack graph, the graph should be examined

to determine where it is incomplete. The results of

changing the graph should be propagated back into

the code audit to ensure that there are not areas that

were previously missed.

3.4 Vulnerabilities

A vulnerability is an unmitigated path through an

attack tree from one or more leaves to the threat,

wherein all conditions for each attack are met. This

specifies a weakness or a collection of weaknesses

which allows an attacker to implement a threat. Vul-

nerabilities are by definition exploitable, and are cre-

ated automatically given accurate and complete at-

tack trees. A path through an attack tree is consid-

ered a vulnerability if there are no mitigated nodes

in the path, including all required branches. Vulnera-

bilities are used heavily in the risk model (see section

4.3 and 4.5 on page 13 for more information).

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 4 Trike v1 Methodology Document [Draft] Page 11

3.5 Mitigations

A mitigation is a safeguard that reduces or eliminates

the risk associated with a particular weakness. The

goal of mitigation is to reduce risk to an acceptable

level, as defined by the stakeholders. A mitigation

can either reduce the likelihood of a successful attack,

or reduce the impact of a successful attack. Mitiga-

tions must be considered carefully. The best thing

to do is to apply an iterative process and perform

the same steps of threat modeling and code auditing

against mitigations that you would against any other

system, as a mitigation can be attacked in the same

way as any other part of the system. Mitigations can

occur at any level, from the addition of new rules or

the alteration of existing rules to code level bug fixes.

Adding new technologies at the DFD level can be a

relatively easy fix for some architectural problems,

but it is very important to look over these kinds of

fixes carefully, as it can be easy to add new issues

without actually fixing the existing ones. Further-

more, some things do not actually mitigate against

any threats. Logging or audit trails are definitely a

good idea from a best-practices standpoint, but they

don’t actually mitigate against any threats directly.

If there are rules requiring the non-repudiation of ac-

tions, logs will be useful, but only as far as they are

correct and trustworthy.

3.6 Attack Libraries

Attack libraries are one of the more useful time saving

features of the Trike methodology. Attack graph gen-

eration, especially if done in-depth, can be very time

consuming. However, there’s no reason to start from

scratch each time. Certain patterns appear again and

again in attacking systems. There are only so many

ways to circumvent a login requirement in an appli-

cation, for instance, so there are high level patterns

there, mirroring the yet higher-level patterns embod-

ied in the threats themselves. Then, there are the

lower-level patterns. Each category of weakness has

specific ways in which it can be exploited — all cross

site scripting exploits share certain similarities. Fur-

thermore, once you’ve attacked a certain technology

in certain ways, you’ll find that these too, repeat.

A library of attacks can thus be built up relatively

easily, with enough experience.

Attack libraries are where the true power of the tech-

nology annotations on data flow diagram and use

flows comes into play. By mapping between the kind

of attack that is being attempted and the technolo-

gies used by relevant DFD elements, the appropriate

portion of the attack library can be selected auto-

matically. In many cases it may be possible for the

subtrees from the attack library to simply be refer-

enced as-is in the system-specific attack graph. How-

ever, in many cases, they will need to be copied into

the graph and customized for the specific system in

question. Either way, this makes the generation of in

depth attack graphs much more rapid. Furthermore,

the more audits an organization has done, the better

their library of attack subtrees will become.

Trike will eventually include functionality for man-

aging attack libraries in an intelligent fashion, but

this is not currently a very high priority, as it is an

operational as opposed to methodological concern.

Trike will also not be shipping with more than a small

demonstration attack library. Attack libraries will re-

quire a certain amount of maintenance work to keep

up with exploit releases for technologies, new soft-

ware versions, etc., and as such it’s not something we

will have time to maintain.

4 Risk Model

While risk modeling and risk management is a core

feature of the Trike methodology, this model is still

highly experimental and will change. We are at-

tempting to reach first an operational risk model and

then an actuarial one, but we do not consider this

model to necessarily be ready for use in either role.

That said, even a rough estimation of risk allows us

an incredible amount of leverage within our frame-

work, and that level of certainty is easily achieved.

One of the key concepts within the Trike risk model

is that of in and out of scope risks. When examin-

ing the potential risks to an application, it is impor-

tant to understand exactly which parts of the system

and which risk factors to those parts are being mod-

eled. For instance, it is quite reasonable for a group

to simply decide that attacks against the cryptogra-

phy of a properly implemented version of the AES

algorithm are out of scope for the purposes of their

threat model. They are assuming any risk there and

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 4 Trike v1 Methodology Document [Draft] Page 12

declaring it to be both acceptable to them and out of

scope for the model. On the other hand, it’s equally

reasonable that such a risk would be explicitly con-

sidered in scope in some high-risk situations. While

we would not necessarily recommend doing so, a team

could also decide that they’re confident in the plat-

form that they develop applications on top of, and

will thus assume the risk for all attacks which might

succeed via the host operating system, runtime, etc.

It is very important to extend the threat model, espe-

cially the attack graphs, to include all of these things

— the model itself should never be pruned, as this

sort of a priori pruning will result in large swathes of

vulnerabilities being missed entirely. Risks can be as-

sumed, changing the prioritization of weaknesses and

vulnerabilities. In the following discussion, we will

assume that risks are being scoped appropriately in

all cases.

4.1 Asset Values, Role Risks, Asset-

Action Risks, and Threat Expo-

sures

As with everything in Trike, we start at a high level

when we consider risk. Each of the entities in the re-

quirements model has associated data relevant to risk

calculations. We start with assets and give each asset

a dollar value, based on its inherent business value to

the organization. This value should be decided by the

business, not the auditor, and represents a rough es-

timate which is nonetheless useful as a relative value

within the system. Next, we look at the actions that

can be taken on an asset and choose relative val-

ues for their undesirability, from one to five where

five is most undesirable. Each pair must be ranked

twice, first with one value for when this authorized

action cannot be completed in accordance with the

rules, and then with a second value for when an at-

tacker completes this action despite the business rules

which disallow it. Obviously, unintended actions do

not need to receive a value of the first type, and ac-

tions which have no associated business rules (e.g.

an anonymous user should always be able to do this)

do not need to receive a number of the second type.

Last, we look at actors, and give each actor a risk

level, again between one and five, with highly trusted

actors being a one and untrusted (likely anonymous)

actors being a five.

With this data defined, we can now give an expo-

sure value for each threat we’ve generated. We de-

fine exposure as the value of an asset multiplied by

the action-specific risk. With this value, we can rank

our threats in order of their seriousness to the orga-

nization.

It should be noted that although the resulting expo-

sure is technically denominated in dollars, this does

not represent a real dollar value risk to the organiza-

tion. Instead, it represents a ranking of threats based

on the values of the assets they pertain to. A further

note is that this asset value model is currently some-

what intentionally naive. An asset does not have a

single value to a company, and although with action

specific risks, we capture some of this information,

reality is much more complicated, of course. Specifi-

cally, it does not sufficiently take into account the dif-

ferences in the value of an asset based on who can take

disallowed actions, and it does not take into account

the asymmetric nature of asset valuation. For exam-

ple, in a supply chain system, an instance of an asset

of customer order information might be worth the

average dollar value of the order to the organization

filling the order, but could be worth much more to

the customer, who has business continuity and com-

petitive intelligence issues if there is a security breach

and a threat is realized against that asset.

4.2 Weakness Probabilities and Miti-

gations

Once we have determined the set of weaknesses in a

system, we can find specific probabilities of exploita-

tion for them, too. First, we rank each weakness on

thee scales, each from one to five. The first scale is re-

producibility, which looks at how easy a given weak-

ness is to reproduce. A complicated race condition

which requires a very specific system state might be

a one, if there was no straightforward way to produce

that state, while an unauthenticated cross site script

would be a five. The second scale is exploitability,

where we look at how technically easy an exploit is

to perform. A simple canned cross site script would

again be a five, while a blind heap injection would be

a one. It is important to be aware of security trends

when assigning these numbers, as they can change;

for instance, if a canned exploit for the previously

mentioned heap injection comes out, exploitability

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 4 Trike v1 Methodology Document [Draft] Page 13

suddenly got much easier. It may pay to be some-

what conservative here, especially when dealing with

widely used software. The third scale denotes the

risk value attached to the least trusted actor able to

technically effect this weakness.

To calculate the probability of a specific weakness

being exploited, we multiply the reproducibility, the

exploitability, and the actor risk value. This proba-

bility factor, although not quantitative by any stretch

of the imagination, provides a somewhat coarse but

still very useful ranking of all the weaknesses in the

system. Note that exploiting a weakness does not

imply fully implementing a threat; rather, it merely

implies exploiting the local weakness in the system.

The probability of a weakness being exploited is a

purely technical measure. Once we have examined

vulnerability risks, we can return to weaknesses and

rank them taking into account business impact.

A mitigation will rarely remove a weakness entirely;

more often, the bar for the attack is simply raised to

a level where the organization responsible feels com-

fortable assuming the risk of the associated vulnera-

bilities. Thus, the primary effect of mitigations is to

reduce the reproducibility or exploitability of a given

weakness or class of weaknesses, or to restrict access

to a more trusted class of user.

4.3 Vulnerability Probabilities and

Exposures

Once we have ranked weaknesses, we can extend that

information to the vulnerabilities which they embody.

For each vulnerability, we define a probability by

looking at the graph of weaknesses which implement

it. The set of vulnerability probabilities and expo-

sures is not directly useful to us, but it allows us

to push weakness probability information up to the

threat level and threat exposure information down to

the weakness level.

If there is only one way to exploit the vulnerability,

the probability of exploit is the lowest probability of

the set of required weaknesses. If there are multi-

ple possible ways to implement the vulnerability, the

probability is the highest of the probabilities of each

sufficient subset of the set of applicable weaknesses.

Another way to understand this is that at each “and”

node in the attack tree, we select the least proba-

ble sub-node, and at each “or” node, we select the

most probable. This represents the situation where

an attacker can pick the path through the attack tree

which is easiest for them to accomplish (“or” nodes),

but is constrained by the hardest obstacles on any

given path (“and” nodes). We define the exposure

for a vulnerability as the sum of the exposures of the

threats this vulnerability makes possible. Again, this

is not a quantitative figure but a useful set of guide-

lines.

4.4 Threat Risks

Once we understand both the exposure for each

threat and the probabilities associated with the vul-

nerabilities that implement that threat, we can calcu-

late a threat risk value. For this, we simply multiply

threat exposure by the largest applicable vulnerabil-

ity risk. This provides us with a set of values which

take into account the technical security issues and

relate them to the business impact of those issues.

4.5 Using the Risk Model

A fully-worked risk model, even a coarse one like

Trike’s current system, is very powerful. The sets of

threat exposures, weakness probabilities, and threat

risks build on each other, and together they pro-

vide a very useful set of capabilities. The first set,

threat exposures, provides an immediate and high

level overview of the risks in the system, without re-

quiring in depth analysis. This allows later work to

be focused on those areas of the system which are

most important. It also provides a good focus for

emergency response planning and incident response.

Although later portions of the risk model provide

more information, they are also colored by assump-

tions about the system based on the implementation.

In an emergency, an understanding of the most basic

prioritization of business importance can be critical.

The set of weakness probabilities is most useful from

a remediation standpoint. Weakness probabilities di-

rectly provide an ordering of all potential places for

mitigations in the system. This allows the threat

model to integrate closely with the overall software

engineering effort for the system in question. As

the vulnerability probabilities embody a dependency

analysis of the weaknesses in the system, we can per-

form an attack graph traversal and provide an order-

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 5 Trike v1 Methodology Document [Draft] Page 14

ing of weaknesses based on which ones contribute the

greatest business exposure to the system. First, we

determine the set of weaknesses which are constrain-

ing the probability for each vulnerability, and then

we simply sum the exposure values for each vulner-

ability that each member of the set of constraining

weaknesses contributes to. This value provides a di-

rect ranking by business impact, and tells the orga-

nization explicitly which weakness to fix first. This

analysis is necessarily iterative, as after each mitiga-

tion is in place, the rankings must be recalculated,

as new weaknesses may have entered the set of con-

straining weaknesses.

Threat risks are perhaps the most useful, as they are

a living model of the risk in the system. They provide

an interactive view of risk to the system as assump-

tions change. For instance, if someone announces a

tool which automates a class of exploit to which the

system in question is vulnerable, the operations staff

for the system can instantly see what the business

level impact is, and respond accordingly. In addi-

tion, recomputing threat risk while examining differ-

ent potential mitigation strategies allows a further

level of decision making, making it possible to find

those weaknesses which will have the largest impact

on the greatest number of separate threats if miti-

gated. A wide variety of speculative risk analysis can

be done at this level, not just operational ones. For

instance, if multiple designs have been threat mod-

eled, threat risks are an appropriate level at which

to compare the security impacts of design decisions,

and indeed the only possible level at which this can

be done.

5 Work Flow Notes

Although there is a definite hierarchy to the informa-

tion in the threat model, Trike itself does not require

any specific work flow, and can be adapted to al-

most any situation. Obviously, you will not be able

to generate attacks until you have threats, but you

could, if you desired, start cataloging some obvious

technology-related weaknesses before examining the

overall requirements of the application. We don’t rec-

ommend working in this way, however, because in our

experience the level of understanding generated in ex-

amining the system requirements will allow you to

work much more quickly when work begins on actual

code auditing. A brief overview of two sample work

flows may be useful for users attempting to imple-

ment Trike in their organizations, and thus follows.

5.1 Full Software Life Cycle Work

Flow

In the ideal situation, threat modeling should be a

formal part of the software development process from

the very earliest stages of development. In this sit-

uation, the documentation required for the threat

modeling process should be integrated into the pri-

mary system documentation, and in the ideal case,

the threat model should simply be integrated as a

core component of documentation. While the model

below obviously maps most directly to a simple wa-

terfall development model, these same steps occur in

all development models. Trike strongly supports in-

formation flowing back up the chain and adapts easily

to piecemeal expansion, and as such fits just as easily

into spiral development or XP/agile models.

Requirements

The requirements document for the application

should be broken out into the assets the system will

act upon, the actors who will take those actions, and

the intended actions which will be supported. A care-

fully analysed set of business rules should be specified

at this stage, which will obviously be useful not only

for the threat model but also for later testing pur-

poses. Threats, when generated, should be explicitly

included in the security section of the requirements

document. Security risk analysis should also be in-

cluded, along with more traditional scheduling and

performance analysis. The most relevant project per-

sonnel to work with at this phase will be business level

people and project managers.

Specification

The specification document for the application should

include a full DFD for the application, a listing of

all intended actions and supporting actions and the

state model required to support those actions, and

use flows for all actions. The specification should

also detail how and where all the business rules from

the requirements document will be enforced. Attacks

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section 5 Trike v1 Methodology Document [Draft] Page 15

against the system should be generated, and the secu-

rity section of the specification should include both

the attacks and how the attacks will be mitigated.

Risk analysis should be performed here to ensure that

appropriate responses to attacks are developed and

that implementation efforts are spent correctly. If

problems come up with the requirements when the

application is designed, the requirements document,

including the generated threats, must be updated,

and this information must be propagated forward to

ensure the correctness of the threat model. The most

relevant personnel to work with at this phase will be

architects and lead developers.

Implementation and Testing

As code is written, it should be checked against the

specification to ensure that all the necessary mitiga-

tions are built, and that the business rules are im-

plemented as specified. Test suites should be used

whenever possible to automatically confirm the en-

forcement of the business rules and the correctness of

mitigations. If new attack vectors are found during

the course of implementation or the code as written

deviates from the specification, the specification doc-

ument must be updated to ensure the correctness of

the threat model. The most relevant people to work

with at this phase will be development and test leads,

with operations leads stepping in for configuration

and network issues.

Audit

When the code is audited, the process should be very

straightforward. A full audit is still necessary, to en-

sure that nothing was missed in the development of

the attack graph, but this will primarily consist of

double checking all potential weaknesses and mitiga-

tions, along with reading the code. Any errors here

should propagate back to the specification as they

are fixed. Development, test, and operations leads

and architects should all be involved here as needed.

Training

Once the audit is complete, the categories of er-

rors found during the audit should be evaluated, and

training scheduled for the relevant personnel to re-

inforce skills in problematic areas. This can occur

earlier in the process as well, and ideally should. If

code is being reviewed as it goes into the source repos-

itory, there’s no reason to wait until after the audit

is finished to fix things. Training should occur at all

levels, based on the issues found and the personnel

involved in those issues.

Operations

In operation, the threat model should be used to di-

rect patching efforts as new system vulnerabilities or

attack vectors come to light. Also, the threat model

can provide direction when allocating resources for

future attack response by highlighting high risk paths

through the system or high value assets. Operations

personnel will be the primary interactors here, al-

though business level people may need to be involved

for risk assumption and future development decisions.

5.2 Pre-Release or Production Code

Audit Work Flow

In many cases, full consideration to security is not or

has not been given during the development process,

and an auditing team is called in to examine code

that is finished and either already in production or

about to be released. While the full software life cy-

cle process still calls for a final pre-production audit,

there is far less work to be done in that case, as all

the needed documentation already exists. A threat

modeling driven audit should try to simulate the full

life cycle to a certain degree, although the lack of in-

formation will necessarily result in more corrections

to the model as new information becomes available.

A threat model will start by working through any

requirements information the team has available to

them to extract the basic actor-asset-action matrix,

along with attached rule information and the risk and

value metrics. Although much of this work can be

done in parallel, starting with the roles in the sys-

tem is often helpful. Next, proceed to specifications

documents for data flow diagrams and state models.

Chances are that at this point, the team will need to

start looking at the implementation directly for guid-

ance and will need to generate these documents as

they go. The process will thus be very iterative, be-

cause as the model is built, new attacks will go into

the attack graph and suggest different areas of the

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section A Trike v1 Methodology Document [Draft] Page 16

implementation to concentrate analysis on. The end

result should be the same, however, because once a

complete understanding of how the application is im-

plemented is reached and the attack graph is fully

formed, all weaknesses should have been examined.

Once such an audit is complete, the documentation

should stay with the project and be integrated into

the next round of development for the project, so that

the more efficient full life cycle model can be used.

A Glossary

Action Something an Actor does to an Asset.

Actor A human being who interacts with some part

of the System.

Asset Data, or occasionally a physical object, which

is featured in the business Rules of the System.

Attack A task which, if it worked, would help ac-

complish a Threat.

Attack Graph The set of all of the interconnected

Attack Trees for a System.

Attack Tree A tree of Attacks, rooted by a

Threat, comprised of all the ways that the

Threat can be realized.

Data Flow In a DFD, a link between two Pro-

cesses or a Process and a Data Store.

Data Flow Diagram (DFD) Describes the Pro-

cesses, Data Stores, and Data Flow in the

System. As used in Trike, it should include a

full complement of technology annotations.

Data Store In a DFD, any location where data is

persisted in the System.

External Interactor In a DFD, a Process which

is either outside the scope of the System or an

Actor.

Intended Actions The Actions the System is

supposed to make possible on each Asset, tak-

ing into account the Rules.

Leaf Node Attacks at the edge of an Attack

Tree which locate a specific type of attack in

the Data Flow Diagram and source code.

Machine Boundary In a DFD, the extent of a

physical or virtual machine on which data is

stored or processes execute.

Mitigation Something which prevents an Attack

from realizing a Threat.

Process In a DFD, any location where work is done

on data in the System.

Rule The circumstances under which an Action

should be possible.

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

Section B Trike v1 Methodology Document [Draft] Page 17

System The entire application, as defined by the

scope of the threat model or audit.

Threat Something which shouldn’t happen, i.e.

something more or less than the Intended Ac-

tions. A potential occurrence, malicious or oth-

erwise, which might damage or compromise As-

sets.

Trust Boundary In a DFD, a Trust Boundary

encloses a region where all actions occur at the

same level of privilege, such as inside a single pro-

cess. DFDs in Trike are expanded until no Pro-

cess or Data Store contains a Trust Bound-

ary.

Vulnerability An unmitigated path from the leaves

of an Attack tree to the Threat.

Weakness The reason a specific Attack succeeds.

A security issue in the System, whether or not

it allows a Threat to be realized. Weaknesses

are attached to the leaf nodes of Attack

Trees.

B References

While Trike itself is original work, a number of books

contributed to our thinking, or document other threat

modeling methodologies.

1. Kovitz, Benjamin L.

Practical Software Requirements:

A Manual of Content and Style. Greenwich,

CT: Manning Publication Company, 1999,

1-884777-59-7.

2. Amoroso, Edward.

Fundamentals of Computer Security Technology.

Upper Saddle River, NJ: Prentice Hall PTR,

1994, 0-13-108929-3

3. Howard, Michael, and David LeBlanc.

Writing Secure Code, 2nd Edition. Redmond,

WA: Microsoft Press, 2003, 0-7356-1722-8.

4. McGraw, Gary, and John Viega.

Building Secure Software: How to Avoid Security Problems the Right Way.

San Francisco: Addison-Wesley, 2002, 0-201-

72152-X.

5. Swiderski, Frank and Window Snyder.

Threat Modeling. Redmond, WA: Microsoft

Press, 2004, 0-7356-1991-3

6. Alberts, Christopher J. and Audrey J. Dorofee.

OCTAVESM Criteria, Version 2.0. Pittsburgh,

PA: Carnegie Mellon Software Engineering In-

stitute, 2001, http://www.cert.org/archive/

pdf/01tr016.pdf.

7. Common Criteria Development Board.

Common Criteria for Information Technology Security Evaluation,

2005, http://www.commoncriteriaportal.

org/public/expert/index.php?menu=3.

Copyright 2003-2005 Paul Saitta, Brenda Larcom, and Michael Eddington

